已知一个口袋中装有六个完全相同的小球,小球上分别标有六个数,搅匀后一次从中摸出一个小球,将小球上的数用表示,将的值分别代入函数和方程,恰好使得函数的图象经过一、三象限,且方程有整数解的概率为 。
如图,直线被第三条直线所截,并且,若,则__________________.
把因式分解的________________.
____________.
(本题12分)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G,∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.(1)求证:△EGB是等腰三角形(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小 度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。
(本题10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元。商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?