如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点。(1)求这个二次函数的表达式。(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由。(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积。
如图,在□ABCD中,对角线AC,BD相交于点O,E、F、G、H分别是OA、OB、OC、OD的中点. (1)试说明四边形EFGH是平行四边形. (2)四边形EFGH与□ABCD相似吗?说明理由.
如图,在△ABC中,D,E分别为边AB,AC的中点. (1)求证:△ADE与△ABC相似; (2)求△ADE与△ABC的相似比.
如图,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点. (1)根据图象,分别写出点A、B的坐标; (2)求出这两个函数的解析式.
制作一种产品,需先将材料加热到60℃,再进行操作,设该材料温度为y(℃),从加热开始经过的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系;当停止加热进行操作时,温度y与时间x成反比例函数关系(如图).已知该材料在操作加工前的温度为15℃,加热5min后温度达到60℃. (1)分别求出当该将材料加热和停止加热操作时,y与x之间的函数解析式. (2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共需多长时间?
如图,点A(m,6),点B(n,1)在反比例函数的图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5. (1)求m,n的值并写出反比例函数的表达式. (2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.