如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点。(1)求这个二次函数的表达式。(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由。(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积。
若(9)=3,求正整数m的值.
计算:(-3a)·a+(-4a)·a-(5a).
计算:(-2ab)+8(a)·(-a)·(-b);
水星和太阳的平均距离约为5.79×10km,冥王星和太阳的平均距离约是水星和太阳的平均距离的102倍,那么冥王星和太阳的平均距离约为多少km?
一台电子计算机每秒可运行4×10次运算,它工作5×10秒可作多少次运算?