某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元. 设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
(每小题6分)解方程: (1)+=1 (2)3-=
先化简,再求值:(-)·,其中x=-3.
(本题共10分)如图,点P、Q在数轴上表示的数分别是-8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒. (1)若点P、Q同时向右运动2秒,则点P表示的数为_______,点P、Q之间的距离是______个单位; (2)经过__________秒后,点P、Q重合; (3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.
(本题共8分)某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):
(1)这天仓库的原料比原来增加了还是减少了?请说明理由; (2)根据实际情况,现有两种方案: 方案一:运进每吨原料费用5元,运出每吨原料费用8元; 方案二:不管运进还是运出费用都是每吨原料6元; 从节约运费的角度考虑,选用哪一种方案比较合适. (3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.
(本题共6分)已知当x=-1时,代数式2mx3-3mx+6的值为7. (1)若关于的方程2my+n=11-ny-m的解为y=2,求n的值; (2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求[m-n]的值.