如图,中,是的中点,,.将沿折起,使点与图中点重合.(Ⅰ)求证:;(Ⅱ)当三棱锥的体积取最大时,求二面角的余弦值;(Ⅲ)在(Ⅱ)的条件下,试问在线段上是否存在一点,使与平面所成的角的正弦值为?证明你的结论.
(本小题满分12分)已知点分别是椭圆的左、右焦点, 点在椭圆上上.(1)求椭圆的标准方程;(2)设直线若、均与椭圆相切,试探究在轴上是否存在定点,点到的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.
(本小题满分12分)设函数(1)当时,求的单调区间;(2)若当时,恒成立,求的取值范围.
(本小题满分12分)如图所示,矩形中,,,,且,交于点。(1)求证:;(2)求三棱锥的体积.
(本小题满分12分)某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.下面的临界值表供参考:
(参考公式:,其中)
(本小题满分12分)如图,在中,已知,是边上的一点, (1)求的值;(2)求的值.