设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上.(1)求椭圆E的方程;(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围.(3)过M()的直线:与过N()的直线:的交点P()在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求·的值.
先解答(1),再通过结构类比解答(2): (1)请用tanx表示,并写出函数的最小正周期; (2)设为非零常数,且,试问是周期函数吗?证明你的结论。
一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品. (1)求这箱产品被用户接收的概率; (2)记抽检的产品件数为,求的分布列和数学期望.
已知数列满足,且=10, (1)求、、;猜想数列的通项公式,并用数学归纳法证明; (2)是否存在常数c,使数列成等差数列?若存在,请求出c的值;若不存在,请说明理由。
一个箱子中装有大小相同的1个红球,2个白球,3个黑球.现从箱子中一次性摸出3个球,每个球是否被摸出是等可能的. (I)求至少摸出一个白球的概率; (Ⅱ)用表示摸出的黑球数,写出的分布列并求的数学期望.
(本小题满分12分) 已知函数()与函数, (Ⅰ) 求函数的单调区间; (Ⅱ)若关于的方程在区间[1,3]内恰有两个相异的实根,求实数的取值范围.