设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上.(1)求椭圆E的方程;(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围.(3)过M()的直线:与过N()的直线:的交点P()在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求·的值.
已知A、B是圆上满足条件的两个点,其中O是坐标原点,分别过A、B作轴的垂线段,交椭圆于点,动点P满足.(1)求动点P的轨迹方程;(2)设S1和S2分别表示和的面积,当点P在x轴的上方,点A在x轴的下方时,求的最大值。
已知抛物线上一点M(1,1),动弦ME、MF分别交轴与A、B两点,且MA=MB。证明:直线EF的斜率为定值。
已知函数,(1)求的单调区间;(2)若,求在区间上的最值;
已知函数的图像过点,且在点M处的切线方程为 (1)求函数的解析式; (2)求函数的单调区间。
已知椭圆C:的左右焦点分别为,点B为椭圆与 轴的正半轴的交点,点P在第一象限内且在椭圆上,且与轴垂直, (1)求椭圆C的方程; (2)设点B关于直线的对称点E(异于点B)在椭圆C上,求的值。