设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上.(1)求椭圆E的方程;(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围.(3)过M()的直线:与过N()的直线:的交点P()在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求的值.
(本小题满分12分) 甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在8,9,10环,且每次射击击中与否互不影响.甲、乙射击命中环数的概率如表:
(Ⅰ)若甲、乙两运动员各射击1次,求甲运动员击中8环且乙运动员击中9环的概率; (Ⅱ)若甲、乙两运动员各自射击2次,求这4次射击中恰有3次击中9环以上(含9环)的概率.
(本小题12分) 如图,在中,为边上的高,,沿将翻折,使得得几何体 (Ⅰ)求证:; (Ⅱ)求点D到面ABC的距离。
(本小题满分12分) 已知二项式(N*)展开式中,前三项的二项式系数和是,求: (Ⅰ)的值; (Ⅱ)展开式中的常数项.
已知定义在的函数,对任意的、,都有,且当时,. (1)证明:当时,; (2)判断函数的单调性并加以证明; (3)如果对任意的、,恒成立,求实数的取值范围.
设为两个不共线向量. (1)试确定实数k,使共线; (2),求使三个向量的终点在同一条直线上的的值.