(本小题满分14分)某商场预计2015年从1月起前个月顾客对某种商品的需求总量(单位:件)(1)写出第个月的需求量的表达式;(2)若第个月的销售量(单位:件),每件利润(单位:元),求该商场销售该商品,预计第几个月的月利润达到最大值?月利润的最大值是多少?(参考数据:)
已知命题P:“”,q:“”,若“”是真命题,求实数a的取值范围.
若圆经过坐标原点和点,且与直线相切, 从圆外一点向该圆引切线,为切点, (Ⅰ)求圆的方程; (Ⅱ)已知点,且, 试判断点是否总在某一定直线上,若是,求出的方程;若不是,请说明理由; (Ⅲ)若(Ⅱ)中直线与轴的交点为,点是直线上两动点,且以为直径的圆过点,圆是否过定点?证明你的结论.
已知⊙M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点. (Ⅰ)若=,求及直线MQ的方程; (Ⅱ)求证:直线AB恒过定点.
三角形ABC的三个顶点A(1,3)B(1,﹣3)C(3,3),求 (Ⅰ)BC边上中线AD所在直线的方程; (Ⅱ)三角形ABC的外接圆O1的方程; (Ⅲ)已知圆O2:,求圆心在x-y-4=0,且过圆O1与圆O2交点的圆的方程。
如图,棱锥的底面是矩形,⊥平面,. (1)求证:BD⊥平面PAC; (2)求二面角P—CD—B的大小; (3)求点C到平面PBD的距离.