如图,在平面直角坐标系中,直线交x轴于A点,交y轴于B点,过A、B两点的抛物线交轴于另一点C,点D是抛物线的顶点.(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作轴的垂线交轴于点H,交直线AB于点F,作PG⊥AB于点G,若△PFG的周长最大,求P点的坐标(3)在抛物线上是否存在除点D以外的点M,使得△ABM与△ABD的面积相等? 若存在,请求出此时点M的坐标,若不存在,请说明理由.
一个圆锥的底面半径为10cm,母线长20cm,求: (1)圆锥的全面积; (2)圆锥的高; (3)轴与一条母线所夹的角; (4)侧面展开图扇形的圆心角.
如图,已知圆锥的母线SB=6,底面半径r=2,求圆锥的侧面展开图扇形的圆心角α.
轴截面是顶角为120°的等腰三角形的圆锥侧面积和底面积的比是多少?
已知两个圆锥的锥角相等,底面面积的比为9:25,其中底面较小的圆锥的底面半径为6cm,求另一个圆锥的底面积的大小.
以斜边长为a的等腰直角三角形的斜边为轴,旋转一周,求所得图形的表面积.