已知函数 (为自然对数的底数).(Ⅰ)求函数在上的单调区间;(Ⅱ)设函数,是否存在区间,使得当时函数的值域为,若存在求出,若不存在说明理由.
设是等差数列,是各项都为正整数的等比数列,且,,,. (Ⅰ)求,的通项公式; (Ⅱ)若数列满足(),且,试求的通项公式及其前项和.
如图,在正四棱台中,,,,、分别是、的中点. (Ⅰ)求证:平面∥平面;(Ⅱ)求二面角的余弦值的大小.注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.
为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过公里的地铁票价如下表:
现有甲、乙两位乘客,他们乘坐的里程都不超过公里.已知甲、乙乘车不超过公里的概率分别为,,甲、乙乘车超过公里且不超过公里的概率分别为, .(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量,求的分布列与数学期望.
已知向量,,实数为大于零的常数,函数,,且函数的最大值为.(Ⅰ)求的值;(Ⅱ)在中,分别为内角所对的边,若,,且,求的最小值.
(本小题满分10分)已知集合A是集合Pn={1,2,3, ,n} (n≥3,n∈N*)的子集,且A中恰有3个元素,同时这3个元素的和是3的倍数.记符合上述条件的集合A的个数为f(n).(1)求f(3),f(4);(2)求f(n)(用含n的式子表示).