设数列,其前项和,为单调递增的等比数列,,.(1)求数列,的通项;(2)若,数列的前项和,求证:.
设有关于的一元二次方程(1)若是从0,1,2,3四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若是从区间[0,3]任取的一个数,是从区间[0,2]任取的一个数,求上述方程有实根的概率.
已知数列是等差数列,,数列的前项和为,且.(1)求数列的通项公式;(2)记,若对任意的恒成立,求实数的取值范围.
已知关于的不等式.(1)当时,求此不等式的解集;(2)若此不等式的解集为R,求实数的取值范围.
已知圆x2+y2-2ax-6ay+10a2-4a=0(0<a4)的圆心为C,直线L: y=x+m。(1)若a=2,求直线L被圆C所截得的弦长的最大值;(2)若m=2,求直线L被圆C所截得的弦长的最大值;
已知点P(-2,-3),圆C:,过P点作圆C的两条切线,切点分别为A、B(1)求过P、A、B三点的外接圆的方程;(2)求直线AB的方程.