已知函数为奇函数,且在处取得极大值2.(Ⅰ)求的解析式;(Ⅱ)过点(可作函数图像的三条切线,求实数的取值范围;(Ⅲ)若对于任意的恒成立,求实数的取值范围.
已知数列的前n项和为,且满足(Ⅰ)求的值; (Ⅱ)求数列的通项公式;
如图,平面⊥平面,四边形与都是直角梯形,∠=∠=,∥,∥,、分别为、的中点.(Ⅰ)证明:四边形是平行四边形;(Ⅱ)、、、四点是否共面?为什么?(III)设,证明:平面⊥平面.
在10支罐装饮料中,有2支是不合格产品,质检员从这10支饮料中抽取2支进行检验。(Ⅰ)求质检员检验到不合格产品的概率;(Ⅱ)若把这10支饮料分成甲、乙两组,对其容量进行测量,数据如下表所示(单位:ml):
请问哪组饮料的容量更稳定些?并说明理由.
在三角形中,.(Ⅰ)求的值; (Ⅱ)求面积的最大值
设函数(1)当曲线处的切线方程(2)求函数的单调区间与极值;(3)已知函数有三个互不相同的零点0,,且。若对任意的,恒成立,求m的取值范围。