(本题12分)如图1,在等边△ABC中,点E从顶点A出发,沿AB的方向运动,同时,点D从顶点B出发,沿BC的方向运动,它们的速度相同,当点E到达点B时, D、E两点同时停止运动.(1)求证:CE=AD;(2)连接AD、CE交于点M,则在D、E运动的过程中,∠CMD变化吗?若变化,则说明理由;若不变,则求出它的度数;(3)如图2,若点D从顶点B出发后,沿BC相反的方向运动,其它条件不变. 求证:CE=DE.
(南充)如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小;(3)求CQ的长.
(南充)已知抛物线与x轴交于点A(m﹣2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x=1.(1)求抛物线解析式.(2)直线()与抛物线相交于两点M(,),N(,)(),当最小时,求抛物线与直线的交点M与N的坐标.(3)首尾顺次连接点O、B、P、C构成多边形的周长为L,若线段OB在x轴上移动,求L最小值时点O,B移动后的坐标及L的最小值.
(成都)(本小题满分10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
(成都)(本小题满分10分)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.
(成都)(本小题满分10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.i)求证:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)