(本题8分)求下列各式中的x: (1);(2).
(8’)如图,某同学在大楼AD的观光电梯中的E点测得大楼BC楼底C点的俯角为45°,此时该同学距地面高度AE为20米,电梯再上升5米到达D点,此时测得大楼BC楼顶B点的仰角为37°,求大楼的高度BC.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).
(8’)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是 ;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是 (用树状图或列表法求解).
(8’)春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1)抽查了 个班级,并将该条形统计图(图2)补充完整;(2)扇形图(图1)中患流感人数为4名所在扇形的圆心角的度数为 ;(3)若该校有45个班级,请估计该校此次患流感的人数.
(8’)先化简,再求代数式(﹣)÷的值,其中x取一个你喜欢的值带进去。
如图,在平面直角坐标系中,点A的坐标为(12,−8),点B、C在x轴上,tan∠ABC=,AB=AC,AH⊥BC于H,D为AC的中点,BD交AH于点M.(1)求过B、C、D三点的抛物线的解析式,并求出抛物线顶点E的坐标;(2)过点E且平行于AB的直线l交y轴于点G,若将(2)中的抛物线沿直线l平移,平移后的抛物线交y轴于点F,顶点为E′(点E′在y轴右侧).是否存在这样的抛物线,使△E′FG为等腰三角形?若存在,请求出此时顶点E’的坐标;若不存在,请说明理由.