(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问3分,(Ⅲ)小问4分)为了了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,记录了小李第天打篮球的时间(单位:小时)与当天投篮命中率的数据,其中.算得:.(Ⅰ)求投篮命中率对打篮球时间的线性回归方程;(Ⅱ)判断变量与之间是正相关还是负相关;(Ⅲ)若小李明天准备打球小时,预测他的投篮命中率.附:线性回归方程中,其中为样本平均数.
已知中心在原点,焦点在x轴上的椭圆的左顶点为A,上顶点为B,左焦点到直线AB的距离为,求椭圆的离心率.
如图,某农场在处有一堆肥料沿道路或送到大田中去,已知,,,且,,能否在大田中确定一条界线,使位于界线一侧沿送肥料较近?若能,请建立适当坐标系求出这条界线方程.
已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线.(1)求椭圆的离心率;(2)设M为椭圆上任意一点,且,证明为定值.
设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.
已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程;(2)已知动直线过点,交抛物线于两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由.