(满分12分)假设关于某设备的使用年限和所支出的维修费用(万元)有如下的统计资料:
若由资料知对呈线性相关关系。(1)请画出上表数据的散点图;(2)请根据最小二乘法求出线性回归方程的回归系数,.(3)估计使用年限为年时,维修费用是多少?,
( 12分)近段时间我国北方严重缺水, 某城市曾一度取消洗车行业. 时间久了,车容影响了市容市貌. 今年该市决定引进一种高科技产品污水净化器,允许洗车行开始营业,规定洗车行必须购买这种污水净化器,使用净化后的污水(达到生活用水标准)洗车. 污水净化器的价格是每台90万元,全市统一洗车价格为每辆每次8元. 该市今年的汽车总量是80000辆,预计今后每年汽车数量将增加2000辆.洗车行A经过测算,如果全市的汽车总量是x,那么一年内在该洗车行洗车的平均辆次是,该洗车行每年的其他费用是20000元. 问:洗车行A从今年开始至少经过多少年才能收回购买净化器的成本?(注:洗车行A买一台污水净化器就能满足洗车净水需求)
(本小题满分13分)如图,四边形ABCD是边长为1的正方形,平面ABCD,平面,且,E为BC的中点.(Ⅰ)求异面直线NE与AM所成角的余弦值;(Ⅱ)在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由.
在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a-c)cosB=bcosC. (Ⅰ)求角B的大小;(Ⅱ)设,的最大值是5,求k的值.
(本小题满分12分)已知函数,其中为常数.(1)当时,恒成立,求的取值范围;(2)求的单调区间.
(本小题满分12分)椭圆的中心为坐标原点,焦点在轴上,焦点到相应准线的距离以及离心率均为,直线与轴交于点,与椭圆交于相异两点、,且.(1)求椭圆方程;(2)若,求的取值范围.