(本小题满分13分)如图,四边形ABCD是边长为1的正方形,平面ABCD,平面,且,E为BC的中点.(Ⅰ)求异面直线NE与AM所成角的余弦值;(Ⅱ)在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由.
(本小题满分12分)已知函数,其图象在点处的切线方程为. (1)求的值; (2)求函数的单调区间,并求出在区间上的最大值.
(本小题满分12分)已知向量设函数 (1)求的最小正周期与单调递减区间; (2)在中、、分别是角的对边,若的面积为,求的值.
(本小题满分12分)在等差数列中,,前项和为,等比数列各项均为正数,,且,的公比. (1)求与;(2)求.
平行六面体ABCD—A1B1C1D1中,AB=4,AD=3,AA1=5,∠BAD=90º , ∠BAA1=∠DAA1=60º ,求AC1的长。
某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.