建造一个容积为8,深为2的长方体无盖水池,若池底和池壁的造价每平方米分别为120元和80元,则如何设计此池底才能使水池的总造价最低,并求出最低的总造价.
已知曲线上任意一点到两个定点和的距离之和为4.(1)求曲线的方程;(2)设过的直线与曲线交于、两点,且(为坐标原点),求直线的方程.
((本小题满分14分)已知直线与抛物线交于A,B两点,且经过抛物线的焦点F,(1)若已知A点的坐标为,求线段AB中点到准线的距离. (2)求面积最小时,求直线的方程。
(本小题满分12分)已知圆C:是否存在斜率为1的直线,使被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程,若不存在说明理由。
(本小题满分12分)已知与曲线、y轴于、为原点。(1)求证:;(2)求线段AB中点的轨迹方程;(3)求△AOB面积的最小值。
(文科)已知抛物线的准线与轴交于点,为抛物线的焦点,过点斜率为的直线与抛物线交于两点。(1)若,求的值;(2)是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,请说明理由。