已知△ABC中,,, 求:角A、B、C的大小。
已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.(1)求椭圆的方程;(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点.证明:为定值;(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由.
如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到海岸线的距离BC=4km.D为海湾一侧海岸线CT上的一点,设CD=x(km),点D对跑道AB的视角为q. (1)将tanq表示为x的函数; (2)求点D的位置,使q取得最大值.
如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.(1)求证:MQ∥平面PAB;(2)若AN⊥PC,垂足为N,求证:MN⊥PD.
已知函数(,是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是,(1)求函数的解析式及其单调增区间;(2)在锐角三角形△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.
如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;(2)已知具有“性质”,且当时,求在上有最大值;(3)设函数具有“性质”,且当时,.若与交点个数为2013,求的值.