在△ABC中,内角A,B,C的对边分别是a,b,c,若,,求A
【2015高考重庆,理20】 设函数(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;(2)若在上为减函数,求的取值范围。
【2015高考天津,理20(本小题满分14分)已知函数,其中.(Ⅰ)讨论的单调性;(Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(Ⅲ)若关于的方程有两个正实根,求证:
【2015高考安徽,理21】设函数.(Ⅰ)讨论函数在内的单调性并判断有无极值,有极值时求出极值;(Ⅱ)记,求函数在上的最大值D;(Ⅲ)在(Ⅱ)中,取,求满足时的最大值.
【2015高考山东,理21】设函数,其中.(Ⅰ)讨论函数极值点的个数,并说明理由;(Ⅱ)若成立,求的取值范围.
【2015江苏高考,17】(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到的距离分别为5千米和40千米,点N到的距离分别为20千米和2.5千米,以所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式,并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.