设已知和在处有相同的切线.(1)求的解析式;(2)求在上的最小值;(3)若对恒成立,求实数的取值范围.
在数列的前n项和。当时,(1)求数列的通项公式;试用n和表示(2)若,证明:(3)当时,证明
在平面直角坐标系xOy中,已知三点A(-1,0),B(1,0),,以A、B为焦点的椭圆经过点C。(I)求椭圆的方程;(II)设点D(0,1),是否存在不平行于x轴的直线与椭圆交于不同两点M、N,使?若存在,求出直线斜率的取值范围;若不存在,请说明理由:(III)对于y轴上的点P(0,n),存在不平行于x轴的直线与椭圆交于不同两点M、N,使,试求实数n的取值范围。
已知(1)当x为何值时,取得最小值?证明你的结论;(2)设f(x)在[-1,1]上是单调函数,求a的取值范围。
在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF//AC,(1)求证:平面BEF⊥平面DEF;(2)求二面角A—BF—E的大小。
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧作,两次烧制过程相互独立,根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75。(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望。