设已知和在处有相同的切线.(1)求的解析式;(2)求在上的最小值;(3)若对恒成立,求实数的取值范围.
如图,在直三棱柱 A B C - A 1 B 1 C 1 中,已知 A C ⊥ B C , B C = C C 1 ,设 A B 1 的中点为 D , B 1 C ∩ B C 1 = E .
求证:
(1) D E ∥ 平面 A A 1 C 1 C
(2) B C 1 ⊥ A B 1 .
在 △ A B C 中,已知 A B = 2 , A C = 3 , A = 60 ° . (1)求 B C 的长; (2)求 sin 2 C 的值.
如图,椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 )的左右焦点分别为 F 1 , F 2 ,且过 F 2 的直线交椭圆于 P , Q 两点,且 P Q ⊥ P F 1 .
(Ⅰ)若 P F 1 = 2 + 2 , P F 2 = 2 - 2 |,求椭圆的标准方程. (Ⅱ)若 P Q = λ P F 1 ,且 3 4 ≤ λ ≤ 4 3 ,试确定椭圆离心率的取值范围.
如图,三棱锥 P - A B C 中,平面 P A C ⊥ 平面 A B C , ∠ A B C = π 2 ,点 D , E 在线段 A C 上,且 A D = D E = E C = 2 , P D = P C = 4 ,点 F 在线段 A B 上,且 E F ∥ B C .
(Ⅰ)证明: A B ⊥ 平面 P F E . (Ⅱ)若四棱锥 P - D F B C 的体积为7,求线段 B C 的长.
已知函数 f ( x ) = a x 3 + x 2 ( a ∈ R ) 在 x = - 4 3 处取得极值. (Ⅰ)确定 a 的值, (Ⅱ)若 g ( x ) = f ( x ) e x ,讨论的单调性.