从射击、乒乓球、跳水、田径四个大项的雅典奥运冠军中选出10名作“夺冠之路”的励志报告.(1)若每个大项中至少选派两人,则名额分配有几种情况?(2)若将10名冠军分配到11个院校中的9个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法?
已知数列、满足:,,。(1)求数列的通项公式;(2)若,求数列{}的前n项和。
已知函数(1)求的单调区间以及极值;(2)函数的图像是否为中心对称图形?如果是,请给出严格证明;如果不是,请说明理由。
设锐角△ABC的三内角A、B、C的对边分别为,向量,,且与共线。(1)求角A的大小;(2)若,,且△ABC的面积小于,求角B的取值范围。
(本小题9分)等差数列{an}不是常数列,a5=10,且a5,a7,a10是某一等比数列{bn}的第1,2,3项,(1)求数列{an}的第20项,(2)求数列{bn}的通项公式。