从射击、乒乓球、跳水、田径四个大项的雅典奥运冠军中选出10名作“夺冠之路”的励志报告.(1)若每个大项中至少选派两人,则名额分配有几种情况?(2)若将10名冠军分配到11个院校中的9个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法?
已知函数 . (1) 求函数的定义域;(2) 求证在上是减函数;(3) 求函数的值域.
关于的不等式在区间上有解,求的取值范围.
解不等式:
已知函数满足,且有唯 一实数解。 (1)求的表达式 ; (2)记,且=,求数列的通项公式。 (3)记 ,数列{}的前 项和为 ,是否存在k∈N*,使得 对任意n∈N*恒成立?若存在,求出k的最小值,若不存在,请说明理由.
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线上。 (1)求a1和a2的值; (2)求数列{an},{bn}的通项an和bn; (3)设cn=an·bn,求数列{cn}的前n项和Tn.