设是实数,函数.(1)试证:对任意,在R上为增函数;(2)是否存在,使为奇函数.
(本小题满分12分)如图,已知平面是正三角形,. (Ⅰ)在线段上是否存在一点,使平面? (Ⅱ)求证:平面平面; (Ⅲ)求二面角的余弦值.
(本小题满分12分)已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为,且. (Ⅰ)求此抛物线的方程; (Ⅱ)过点做直线交抛物线于两点,求证:.
(本小题满分12分)已知命题:在上定义运算:不等式对任意实数恒成立;命题:若不等式对任意的恒成立.若为假命题,为真命题,求实数的取值范围.
(本小题满分12分)在中,角的对边分别为,已知. (Ⅰ)求角的大小; (Ⅱ)若,求△的面积.
已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限). (Ⅰ)求椭圆的方程; (Ⅱ)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.