数列{an}的前n项和为Sn,若3Sn+an=3n+2(n∈N*),数列{bn}满足2bn+1=bn+bn+2(n∈N*),且b3=7,b8=22.(1)求数列{an}和{bn}的通项公式an和bn;(2)设数列cn=anbn,求{cn}的前n项和Tn.
(本小题满分12分) 某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为. (I)试确定、的值; (II)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率; (III)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为,求随机变量的数学期望.
(本小题满分12分) 已知正数数列的前n项和为,且,数列满足 (Ⅰ)求数列的通项公式与的前n项和; (Ⅱ)设数列的前项和为,求证:.
对于在区间 [ m,n ] 上有意义的两个函数与,如果对任意,均有,则称与在 [ m,n ] 上是友好的,否则称与在 [ m,n ]是不友好的.现有两个函数与(a > 0且),给定区间. 若与在给定区间上都有意义,求a的取值范围; 讨论与在给定区间上是否友好.
已知定义域为R的函数是奇函数. (1)求a,b的值; (2)若对任意,不等式恒成立,求k的取值范围.
已知函数对于任意,总有,且x > 0时,,. (1)求证:在R上是减函数; (2)求在[– 2,2] 上的最大值和最小值.