(本小题满分12分)已知函数(1)求的最小正周期及其单调减区间;(2)当时,求的值域
如图,三角形是边长为4的正三角形,底面,,点是的中点,点在上,且.(1)证明:平面平面;(2)求直线和平面所成角的正弦值.
如图,在边长为1的正方体ABCD-A1B1C1D1中,求证: (1)A1C^平面BDC1; (2)求三棱锥A1—BDC1的体积。
长方体中,,,点为中点.(Ⅰ)求证: 平面;(Ⅱ)求证:平面;
如图,在平面直角坐标系中,点,直线:.设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.
如图甲,⊙的直径,圆上两点在直径的两侧,使,.沿直径折起,使两个半圆所在的平面互相垂直(如图乙),为的中点,为的中点.为上的动点,根据图乙解答下列各题:(1)求点到平面的距离;(2)求证:不论点在何位置,都有⊥;(3)在弧上是否存在一点,使得∥平面?若存在,试确定点的位置;若不存在,请说明理由.