(本小题满分12分) 已知二次函数,当时函数取最小值,且.(1) 求的解析式;(2) 若在区间上不单调,求实数的取值范围。
设是椭圆的两个焦点,是椭圆上一点,若,证明:的面积只与椭圆的短轴长有关
从椭圆上一点向轴引垂线,垂足恰为椭圆的左焦点,为椭圆的右顶点,是椭圆的上顶点,且.⑴求该椭圆的离心率.⑵若该椭圆的准线方程是,求椭圆方程.
已知长方形ABCD, AB=2,BC=1.以AB的中点为原点建立如图8所示的平面直角坐标系.(Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程;(Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.
已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P)在椭圆上,线段PB与y轴的交点M为线段PB的中点。(1)求椭圆的标准方程;(2)点C是椭圆上异于长轴端点的任意一点,对于△ABC,求的值。
已知椭圆与过点A(2,0),B(0,1)的直线l有且只有一个公共点T,且椭圆的离心率.求椭圆方程