(本小题满分12分)设A(x1,y1),B(x2,y2)是函数f(x)=的图象上任意两点,且,已知点M的横坐标为.求证:M点的纵坐标为定值; 若Sn=f(∈N*,且n≥2,求Sn;已知an=,其中n∈N*.Tn为数列{an}的前n项和,若Tn<λ(Sn+1+1)对一切n∈N*都成立,试求λ的取值范围.
(本小题14分)已知函数. (1)若,点P为曲线上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程; (2)若函数在上为单调增函数,试求的取值范围.
(本小题13分)如图,在四棱锥中, 底面是矩形,侧棱PD⊥底面,,是的中点,作⊥交于点. (1)证明:∥平面; (2)证明:⊥平面.
(本小题12分)袋中有大小、形状相同的红、黑球各两个,现依次不放回地随机取3次,每次取一个球. (1)试问:一共有多少种不同的结果,请列出所有可能的结果; (2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.
(本小题13分)已知向量, (1)当∥时,求的值; (2)求在上的值域.
(本小题满分12分) 已知(其中,为实数). (I)若在处取得极值为2,求、的值; (II)若在区间上为减函数且,求的取值范围.