(本题14分)设集合,集合,(1)若,求;(2)若,求实数的取值范围.
设函数. (Ⅰ)若函数在上为减函数,求实数的最小值; (Ⅱ)若存在,使成立,求实数的取值范围.
已知椭圆:的一个焦点为,左右顶点分别为,.经过点的直线与椭圆交于,两点. (Ⅰ)求椭圆方程; (Ⅱ)记与的面积分别为和,求的最大值.
如图, 已知四边形和均为直角梯形,∥,∥,且,平面⊥平面, (Ⅰ)证明:平面; (Ⅱ)求平面和平面所成锐二面角的余弦值.
已知数列的前项和为,若(),且. (Ⅰ)求证:数列为等差数列; (Ⅱ)设,数列的前项和为,证明:().
在锐角中,分别为角所对的边,且 (Ⅰ)确定角的大小; (Ⅱ)若,且的面积为,求的值.