(本题14分)设集合,集合,(1)若,求;(2)若,求实数的取值范围.
如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.
已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.(1)试用向量方法证明E、F、G、H四点共面;(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.
如图所示,正方体ABCD-A1B1C1D1,M为AA1的中点,N为A1B1上的点,且满足A1N=NB1,P为底面正方形A1B1C1D1的中心.求证:MN⊥MC,MP⊥B1C.
如图所示,平行六面体ABCD—A1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC1的长;(2)求BD1与AC夹角的余弦值.
如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,cos〈,〉=.(1)建立适当的空间坐标系,写出点E的坐标;(2)在平面PAD内求一点F,使EF⊥平面PCB.