(本小题14分)如图2,在四面体中,且(1)设为的中点,证明:在上存在一点,使,并计算的值;(2)求二面角的平面角的余弦值.
如右图,在四棱锥中,底面为平行四边形,,,为中点,平面, ,为中点. (1)证明://平面; (2)证明:平面; (3)求直线与平面所成角的正切值.
设函数 (1)若关于x的不等式在有实数解,求实数m的取值范围; (2)设,若关于x的方程至少有一个解,求的最小值. (3)证明不等式:
数列的前项和记为,,. (I)当为何值时,数列是等比数列? (II)在(I)的条件下,若等差数列的前项和有最大值,且,又,,成等比数列,求.
如图,在某港口处获悉,其正东方向20海里处有一艘渔船遇险等待营救,此时救援船在港口的南偏西据港口10海里的处,救援船接到救援命令立即从处沿直线前往处营救渔船. (Ⅰ) 求接到救援命令时救援船据渔船的距离; (Ⅱ)试问救援船在处应朝北偏东多少度的方向沿直线前往处救援?(已知).
已知向量,,设函数的图象关于直线对称,其中,为常数,且. (Ⅰ)求函数的最小正周期; (Ⅱ)若的图象经过点,求函数在区间上的取值范围.