(本题8分)为提高初中生的身体素质,教育行政部门规定:初中生每天参加户外活动的平均时间应不少于1小时.为了解学生参加户外活动的情况,某县教育行政部门对部分学生参加户外活动的时间进行了抽样调查,并将调查结果绘制成下列两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)这次抽样共调查了 名学生,并补全条形统计图;(2)计算扇形统计图中表示户外活动时间0.5小时的扇形圆心角度数;(3)本次调查学生参加户外活动的平均时间是否符合要求?(写出判断过程)
如图,点A、B、C分别是⊙O上的点,CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠ABC=60°.求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE•AB的值.
如图(1),在直角坐标系xOy中,抛物线与x轴交于A、B两点,交y轴于点C,过A点的直线与抛物线的另一交点为D(m,3),与y轴相交于点E,点A的坐标为(-1,0),∠BAD=45°,点P是抛物线上的一点,且点P在第一象限. (1)求直线AD和抛物线的解析式; (2)若S△PBC:S△BOC=2:3,求点P的坐标; (3)如图(2),若M为抛物线的顶点,点Q为y轴上一点,求使QM+QB最小时,点Q的坐标,并求QM+QB的最小值.
如图,在等腰直角三角形ABC和DEC中,∠BCA=∠DCE=90°,点E在边AB上,ED与AC交于点F,连接AD. (1)求证:△BCE≌△ACD. (2)求证:AB⊥AD.
某公司生产的某种商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)满足一次函数且关系如下表:
未来40天内,每天的销售价格y(元)与时间t(天)的函数关系式如下:
(1)求日销售量m(件)与时间t(天)的函数关系; (2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少; (3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径的⊙0与边AC相切于点E,连接DE并延长,与BC的延长线交于点F. (1)求证:BD=BF; (2)若BC=12,AD=8,求BF的长.