(本小题满分12分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如下图所示.(1)上表是年龄的频数分布表,求正整数的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
(本小题满分12分)已知椭圆:,其通径(过焦点且与x轴垂直的直线被椭圆截得的线段)长. (1)求椭圆的方程; (2)设过椭圆右焦点的直线(不与轴重合)与椭圆交于两点,问在轴上是否存在一点,使为常数?若存在,求点的坐标,若不存在,说明理由.
本小题满分12分)在平行六面体中,,,是的中点. (1)证明:面; (2)若,求直线与平面所成角的正弦值.
(本小题满分12分)某电视台有一档综艺节目,其中有一个抢答环节,有甲、乙两位选手进行抢答,规则如下:若选手抢到答题权,答对得20分,答错或不答则送给对手10分.已知甲每次抢到答题权的概率为,且答对的概率为,乙抢到答题权的概率为,且答对的概率为. (1)在一轮抢答中,甲得到0分的概率; (2)若比赛进行两轮,求甲得分的分布列及其期望.
(本小题满分12分)已知的三个内角A、B、C的对边分别为,且的面积. (1)求角B的大小; (2)若,且,求边的取值范围.
(本小题满分13分)已知函数,其中为常数,且. (1)若曲线在点处的切线与直线垂直,求的值; (2)若函数在区间上的最小值为,求的值.