已知函数,,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
某小区要建一座八边形的休闲小区,它的主体造型的平面图是由二个相同的矩形ABCD和EFGH构成的面积为200 m2的十字型地域,计划在正方形MNPQ上建一座“观景花坛”,造价为4200元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个空角(如ΔDQH等)上铺草坪,造价为80元/m2。 设总造价为S元,AD长为xm,试建立S与x的函数关系; 当x为何值时,S最小?并求这个最小值。
已知:在函数的图象上,以为切点的切线的倾斜角为 (I)求的值; (II)是否存在最小的正整数,使得不等式恒成立?如果存在,请求出最小的正整数,如果不存在,请说明理由。
直角坐标系中,O为坐标原点,设直线经过点,且与轴交于 点F(2,0)。 (I)求直线的方程; (II)如果一个椭圆经过点P,且以点F为它的一个焦点,求椭圆的标准方程。
已知不重合的两个点,为坐标原点。 (1)求夹角的余弦值的解析式及其值域; (2)求的面积,并求出其取最大值时,的值。
.某建筑的金属支架如图所示,根据要求至少长2.8m,为的中点,到的距离比的长小0.5m,,已知建筑支架的材料每米的价格一定,问怎样设计的长,可使建造这个支架的成本最低?