设函数.(1)求函数的最小正周期和单调递增区间;(2)当时,的最大值为2,求的值,并求出的对称轴方程.
某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题: (1)求高三(1)班全体女生的人数; (2)求分数在之间的女生人数;并计算频率分布直方图中间的矩形的高; (3)若要从分数在之间的试卷中任取两份分析女学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.
已知向量。 (1)若,求的值; (2)记,在中,角的对边分别是,且满足,求函数的取值范围。
过点的圆C与直线相切于点. (1)求圆C的方程; (2)已知点的坐标为,设分别是直线和圆上的动点,求的最小值. (3)在圆C上是否存在两点关于直线对称,且以为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.
己知数列的前n项和为,,当n≥2时,,,成等差数列. (1)求数列的通项公式; (2)设,是数列的前n项和,求使得对所有都成立的最小正整数.
已知的角所对的边,且. (1)求角的大小; (2)若,求的最大值并判断这时三角形的形状.