用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?
已知函数 (1)若函数在点处的切线与圆相切,求的值; (2)当时,函数的图像恒在坐标轴轴的上方,试求出的取值范围.
已知函数 (1)当时,求函数的单调区间; (2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数在上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
如图,四棱锥中,面面,底面是直角梯形,侧面是等腰直角三角形.且∥,,,. (1)判断与的位置关系; (2)求三棱锥的体积; (3)若点是线段上一点,当//平面时,求的长.
已知为锐角,且,函数,数列{}的首项. (Ⅰ)求函数的表达式; (Ⅱ)求数列的前项和.
的外接圆半径,角的对边分别是,且. (1)求角和边长; (2)求的最大值及取得最大值时的的值,并判断此时三角形的形状.