设函数,其中.(1)若,求在[1,4]上的最值;(2)若在定义域内既有极大值又有极小值,求实数的取值范围;
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min (Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率 (Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望
(本小题满分12分) 现有甲、乙两个口袋,甲袋装有2个红球和2个白球,乙袋装有2个红球和n个白球,某人从甲、乙两个口袋中等可能性地各取2个球. (1)若,求取到的4个球全是红球的概率; (2)若取到的4个球中至少有2个红球的概率为,求n的值.
(本小题满分12分) 设函数,图象的一条对称轴是直线. (1)求; (2)求函数的单调增区间; (3)画出函数在区间上的图象.
设是函数的两个极值点,且, (1)证明:; (2)证明:。
已知二次函数的图像经过点,且点M在轴的下方, (1)求证:的图像与轴交于不同的两点; (2)设的图像与轴交于点,求证:介于之间。