设函数.(Ⅰ)若函数在定义域上是单调函数,求的取值范围;(Ⅱ)若,证明对于任意的,不等式.
已知函数.(1)设的定义域为A,求集合A;(2)判断函数在(1,+)上单调性,并用定义加以证明.
计算:(1)集合(2)
已知椭圆的左、右两个顶点分别为、.曲线是以、两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点.(1)求曲线的方程;(2)设点、的横坐标分别为、,证明:;(3)设与(其中为坐标原点)的面积分别为与,且,求 的取值范围。
已知函数(1)当时,求函数的单调区间;(2)函数在上是减函数,求实数a的取值范围.
已知数列是等差数列,为其前项和,,且,成等比数列;(1)求数列的通项公式;(2)设,为数列的前项和,若对一切正整数恒成立,求实数的范围.