已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.
在中,AB=2BF=4,C,E分别是AB,AF的中点(如下左图).将此三角形沿CE对折,使平面AEC⊥平面BCEF(如下右图),已知D是AB的中点. (1)求证:CD∥平面AEF; (2)求证:平面AEF⊥平面ABF; (3)求三棱锥C-AEF的体积,
某公司研制出一种新型药品,为测试该药品的有效性,公司选定个药品样本分成三组,测试结果如下表:
已知在全体样本中随机抽取个,抽到组药品有效的概率是. (1)现用分层抽样的方法在全体样本中抽取个测试结果,问应在组抽取样本多少个? (2)已知,,求该药品通过测试的概率(说明:若药品有效的概率不小于%,则认为测试通过).
数列的前n项和记为,,点在直线上,n∈N*. (1)求证:数列是等比数列,并求数列的通项公式; (2)设,是数列的前n项和,求的值.
在中,角A,B,C所对边分别为a,b,c,且向量,,满足 (1)求角C的大小; (2)若成等差数列,且,求边的长
已知函数,. (1)若,求函数的单调区间; (2)若恒成立,求实数的取值范围; (3)设,若对任意的两个实数满足,总存在,使得成立,证明:.