已知向量,,函数.(1)求函数定义域及最小正周期;(2)求函数的单调减区间.
(本题满分15分)已知椭圆,抛物线,过椭圆右顶点的直线交抛物线于两点,射线分别与椭圆交于点,点为原点.(Ⅰ)求证:点在以为直径的圆的内部;(Ⅱ)记的面积分别为,问是否存在直线使若存在,求出直线 的方程,若不存在,请说明理由.
(本题满分14分) 如图,已知四棱锥,底面为菱形,平面,, 是的中点,为线段上一点.(Ⅰ)求证:;(Ⅱ)若为上的动点,与平面所成最大角的 正切值为,若二面角的余弦值为,求的值。
(本题满分14分)已知数列的首项,且当时, ,数列满足 (Ⅰ)求证:数列是等差数列,并求的通项公式;(Ⅱ) 若(),如果对任意,都有,求实数 的取值范围.
(本题满分14分)如图,在中,已知,,为边上一点.(Ⅰ)若,求的长;(Ⅱ) 若,试求的周长的取值范围.
(本题满分15分)抛物线的方程是,曲线与关于点 对称.(Ⅰ)求曲线的方程; (Ⅱ)过点(8,0)的直线交曲线于M、N两点,问在坐标平面上能否找到某个定点,不论直线如何变化,总有。若找不到,请说明理由;若能找到,写出满足要求的所有的点的坐标.