已知向量,,函数.(1)求函数定义域及最小正周期;(2)求函数的单调减区间.
点 P ( x 0 , y 0 ) 在椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 上, x 0 = a cos β , y 0 = b sin β , 0 < β < π 2 直线 l 2 与直线 l 1 : x 0 a 2 x + y 0 b 2 y = 1 垂直, O 为坐标原点,直线 O P 的倾斜角为 α ,直线 l 2 的倾斜角为 γ . (I)证明: 点 P 是椭圆 x 2 a 2 + y 2 b 2 = 1 与直线 l 1 的唯一交点; (II)证明: t a n α , tan β , tan γ 构成等比数列.
(本小题满分14分) 设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程; (3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
(本小题满分14分)设椭圆E: (a,b>0)过M(2,),N (,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由。
(本小题共14分)已知双曲线的离心率为,右准线方程为(Ⅰ)求双曲线的方程;(Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.
在平面直角坐标系 x O y 中,抛物线 C 的顶点在原点,经过点 A ( 2 , 2 ) ,其焦点 F 在 x 轴上.
(1)求抛物线 C 的标准方程; (2)求过点 F ,且与直线 O A 垂直的直线的方程; (3)设过点 M ( m , 0 ) ( m > 0 ) 的直线交抛物线 C 于 D 、 E 两点, M E = 2 D M ,记 D 和 E 两点间的距离为 f ( m ) ,求 f ( m ) 关于 m 的表达式.