已知向量,,函数.(1)求函数定义域及最小正周期;(2)求函数的单调减区间.
已知函数时,的值域为,当时,的值域为,依次类推,一般地,当时,的值域为,其中k、m为常数,且(1)若k=1,求数列的通项公式;(2)项m=2,问是否存在常数,使得数列满足若存在,求k的值;若不存在,请说明理由;(3)若,设数列的前n项和分别为Sn,Tn,求。
已知函数,其中a为常数,且(1)若是奇函数,求a的取值集合A;(2)当a=-1时,设的反函数为,且函数的图像与 的图像关于对称,求的取值集合B。(3)对于问题(1)(2)中的A、B,当时,不等式恒成立,求x的取值范围。
数列满足,.(1)求通项公式;(2)令,数列前项和为,求证:当时,;(3)证明:.
已知数列中,,对于任意的,有(1)求数列的通项公式;(2)若数列满足:求数列的通项公式;(3)设,是否存在实数,当时,恒成立,若存在,求实数的取值范围,若不存在,请说明理由.
已知各项均为正数的数列满足,, .(Ⅰ)求证:数列是等比数列; (Ⅱ)当取何值时,取最大值,并求出最大值;(Ⅲ)若对任意恒成立,求实数的取值范围.