如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.
对于函数(1)探索函数的单调性,并用单调性定义证明;(2)是否存在实数使函数为奇函数?
已知函数(1)判断函数的奇偶性,并说明理由。(2)若,求使成立的集合。
已知函数(1)若在[-3,2]上具有单调性,求实数的取值范围。(2)若的有最小值为-12,求实数的值;
求值:(1)(2)
已知定义在上的函数,如果满足:对任意,存在常数,使得成立,则称是上的有界函数,其中称为函数的上界.下面我们来考虑两个函数:,.(Ⅰ)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(Ⅱ)若,函数在上的上界是,求的取值范围;(Ⅲ)若函数在上是以为上界的有界函数, 求实数的取值范围.