已知函数满足对任意实数都有成立,且当时,,.(1)求的值;(2)判断在上的单调性,并证明;(3)若对于任意给定的正实数,总能找到一个正实数,使得当时,,则称函数在处连续。试证明:在处连续.
如图,在三棱锥中,分别为的中点. (1)求证:平面; (2)若平面平面,且,, 求证:平面平面.
已知, (1)当时,解不等式;(2)若,解关于x的不等式.
(本题12分)在平面直角坐标系中,已知椭圆的离心率为,其焦点在圆上. ⑴求椭圆的方程; ⑵设、、是椭圆上的三点(异于椭圆顶点),且存在锐角,使. ①试求直线与的斜率的乘积; ②试求的值.
(本题12分)已知椭圆的离心率,过、两点的直线到原点的距离是. (1)求椭圆的方程 ; (2)已知直线交椭圆于不同的两点、,且、都在以为圆心的圆上,求的值.
(本题12分)已知中心在原点的双曲线的右焦点为,右顶点为. (1)试求双曲线的方程; (2)过左焦点作倾斜角为的弦,试求的面积(为坐标原点).