设椭圆 的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.
已知抛物线:若抛物线上点,2到焦点的距离为3,求抛物线的方程。 设过焦点的动直线交抛物线于、两点,连接、并延长分别交抛物线的准线于、,求证:以为直径的圆过焦点。
已知函数,设数列满足,。求证:数列是等差数列;设…,求。
如图,在直三棱柱中,,,,,为侧棱上一点,且。求证:平面;求二面角的大小。
选修:不等式选讲 已知函数 (1)求不等式的解集; (2)若关于的不等式的解集非空,求实数的取值范围
选修:坐标系与参数方程 在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,得曲线的极坐标方程为(). (1)化曲线、的方程为普通方程,并说明它们分别表示什么曲线; (2)设曲线与轴的一个交点的坐标为经过点作曲线的切线,求切线的方程.