根据下列条件求椭圆的标准方程:(1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作长轴的垂线恰好过椭圆的一个焦点;(2)经过两点A(0,2)和B.
已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.
在△ABC中,内角A、B、C对边的边长分别是a、b、c.已知c=2,C=. (1)若△ABC的面积等于,求a、b的值; (2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,求tanC的值.
(1)△ABC中,a=8,B=60°,C=75°,求b; (2)△ABC中,B=30°,b=4,c=8,求C、A、a.
在△ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断三角形的形状.