市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
如图,直线经过点A(4,0),B(0,3).(1)求直线的函数表达式;(2)若圆M的半径为2,圆心M在轴上,当圆M与直线相切时,求点M的坐标.
如图1,关于的二次函数y=-+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上。(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2=3,若存在求出点F的坐标,若不存在请说明理由。
(为方便答题,可在答题卡上画出你认为必要的图形) 在Rt△ABC中,∠A=90°,AC =" AB" = 4,D,E分别是边AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰RtRt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P. (1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果) (2)如图2,当α=135°时,求证:BD1 = CE1 ,且BD1⊥ CE1 ; (3)求点P到AB所在直线的距离的最大值.(直接写出结果)
如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动。(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:=CG·CE.
已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF. (1)如图1,连接BD,AF,则BD AF(填“>”、“<”或“=”); (2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.