将△ABC向右平移7个方格得到△,再向上平移6个方格后得到△,试作出两次平移的图形。
如图,已知△ABC的三个顶点在格点上. (1)作出与△ABC关于轴对称的图形△A1B1C1; (2)作出△ABC绕原点顺时针旋转180º得到的图形△A2B2C2; (3)在(1)、(2)的条件下,若△ABC的边AB上有一点P(,),其对称点为P1、P2,试写出点P1、P2的坐标:P1( )、P2( ).
计算: .
求各式中的实数x.(1); (2)
(本题10分)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.(1)直接写出点A、B的坐标:A( , )、B( , );(2)若抛物线y=-x2+bx+c经过点A、B,请求出这条抛物线的解析式;(3)当≤x≤7,在抛物线上存在点P,使△ABP的面积最大,那么△ABP最大面积是 .(请直接写出结论,不需要写过程)
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?