已知(1)求函数在上的最小值;(2)对一切恒成立,求实数的取值范围;(3)证明:对一切,都有成立.
如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ABC=45°,AB=2,BC=2AE=4,三角形PAB是等腰三角形.(Ⅰ)求证:平面PCD⊥平面PAC;(Ⅱ)求直线PB与平面PCD所成角的大小;(Ⅲ)求四棱锥P—ACDE的体积.
先后随机投掷2枚正方体骰子,其中表示第枚骰子出现的点数,表示第枚骰子出现的点数。设点P的坐标为。 (1)求点在直线上的概率;(2)求点满足的概率
已知函数(I)求函数的最小正周期。(II) 求函数的最大值及取最大值时x的集合
已知是首项为19,公差为-2的等差数列,为的前项和.(Ⅰ)求通项及;(Ⅱ)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
:如图,两个工厂相距,点为的中点,现要在以为圆心,为半径的圆弧上的某一点处建一幢办公楼,其中.据测算此办公楼受工厂的“噪音影响度”与距离的平方成反比,比例系数是1,办公楼受工厂的“噪音影响度” 与距离的平方也成反比,比例系数是4,办公楼受两厂的“总噪音影响度”是受两厂“噪音影响度”的和,设为.(Ⅰ)求“总噪音影响度” 关于的函数关系,并求出该函数的定义域;(Ⅱ)当为多少时,“总噪音影响度”最小?