抛物线的方程为,过抛物线上一点()作斜率为的两条直线分别交抛物线于两点(三点互不相同),且满足(且).(1)求抛物线的焦点坐标和准线方程;(2)设直线上一点,满足,证明线段的中点在轴上;(3)当=1时,若点的坐标为,求为钝角时点的纵坐标的取值范围.
数列中,,(是常数,),且成公比不为的等比数列。 (I)求的值; (II)求的通项公式。 (III)由数列中的第1、3、9、27、……项构成一个新的数列{b},求的值。
数列的前项和满足(,且).数列满足. (Ⅰ)求数列的前项和; (Ⅱ)若对一切都有,求的取值范围.
已知等差数列的首项,公差.且分别是等比数列的. (1)求数列与的通项公式; (2)设数列对任意自然数均有:成立.求的值。
已知数列 (I)求数列的通项公式; (II)记
已知函数 (1)若函数存在单调递减区间,求的取值范围; (2)若且关于x的方程在上恰有两个不相等的实数根,求实数的取值范围; (3)设各项为正的数列满足:求证: