如图,点A是x轴正半轴上的动点,点B的坐标为(0,4),将线段AB的中点绕点A按顺时针方向旋转90°得点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连接AC、BC、CD,设点A的横坐标为t.(1)线段AB与AC的数量关系是 ,位置关系是 .(2)当t=2时,求CF的长;(3)当t为何值时,点C落在线段BD上?求出此时点C的坐标;(4)设△BCE的面积为S,求S与t之间的函数关系式.
操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计: 说明:方案一:图形中的圆过点A、B、C; 方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点. 纸片利用率=×100% 发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点. 你认为小明的这个发现是否正确,请说明理由. (2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%. 请帮忙计算方案二的利用率,并写出求解过程. 探究: (3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.
如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起. (1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转45°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论; (2)操作2,如图2,将正方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式; (3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.
为应对全球经济危机,中国政府投资40000亿元人民币以拉动内需,5月21日国家发改委公布了40000亿元投资构成,具体内容如下:单位:亿元
请你根据统计图表中所提供的信息,完成下列问题: (1)在统计表中,投向“铁路等重大基础设施建设和城市电网改造”的资金测算是 亿元,投向“汶川地震灾后恢复重建”的资金测算是 亿元; (2)在扇形统计图中,“卫生、教育等社会事业发展”部分所占的百分数是 ,“节能减排和生态建设工程”部分所占的百分数是 ; (3)统计表“资金测算”栏目下的七个数据中,中位数是 亿元,众数是 亿元; (4)在扇形统计图中,“廉租住房等保障性住房”部分所占的圆心角为度.
如图①,在平行四边形ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ. (1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示). (2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式. (3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值. (4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.
如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF. (1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想; (2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系; (3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.