在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为:(t为参数),直线与曲线C分别交于M,N.(1)写出曲线C和直线的普通方程;(2)若成等比数列,求a的值.
数列满足: (1)记,求证:数列是等比数列; (2)求数列的通项公式.
设不等式的解集为,. (Ⅰ)证明:; (Ⅱ)比较与的大小,并说明理由.
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系。已知曲线C1的极坐标方程为,直线l的极坐标方程为。 (Ⅰ)写出曲线C1与直线l的直角坐标方程; (Ⅱ)设Q为曲线C1上一动点,求Q点到直线l距离的最小值。
如图,四边形ABCD内接于⊙,是⊙的直径,于点,平分. (Ⅰ)证明:是⊙的切线 (Ⅱ)如果,求.
设,函数,函数,. (Ⅰ)当时,写出函数零点个数,并说明理由; (Ⅱ)若曲线与曲线分别位于直线的两侧,求的所有可能取值.