已知圆C1的参数方程为(φw为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=4sin(θ+).(1)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标系方程;(2)圆C1,C2是否相交?请说明理由.
( (本小题满分12分) 已知数列中,,且当时,函数取得极值。 (Ⅰ)求数列的通项公式; (Ⅱ)数列满足:,,证明:是等差数列,并求数列的通项公式通项及前项和.
( 已知长方体ABCD-中,棱AB=BC=3,=4,连结, 在上有点E,使得⊥平面EBD ,BE交于F. (1)求ED与平面所成角的大小; (2)求二面角E-BD-C的大小.
(本小题满分12分) 栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为,,移栽后成活的概率分别为,. (1)求甲、乙两种果树至少有一种果树成苗的概率; (2)求恰好有一种果树能培育成苗且移栽成活的概率.
(本小题满分10分) 在中,已知内角,边.设内角,周长为. (1)求函数的解析式和定义域; (2)求的最大值.
(本小题满分12分) 已知函数, (1)若,求的单调区间; (2)当时,求证:.