对于函数,若=x,则称x为的“不动点”;若,则称x为 “稳定点”,函数的“不动点”和“稳定点”的集合分别记为A和B,既.(1)证明:AB(2)若 ,且,求实数a的取值范围.
已知长方形ABCD, AB=2,BC=1.以AB的中点为原点建立如图8所示的平面直角坐标系. (Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程; (Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.
已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P)在椭圆上,线段PB与y轴的交点M为线段PB的中点。 (1)求椭圆的标准方程; (2)点C是椭圆上异于长轴端点的任意一点,对于△ABC,求的值。
已知椭圆与过点A(2,0),B(0,1)的直线l有且只有一个公共点T,且椭圆的离心率.求椭圆方程
如图,在Rt△ABC中,∠CAB=90°,AB=2,AC=。一曲线E过点C,动点P在曲线E上运动,且保持|PA|+|PB|的值不变,直线l经过A与曲线E交于M、N两点。 (1)建立适当的坐标系,求曲线E的方程; (2)设直线l的斜率为k,若∠MBN为钝角,求k的取值范围。
已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,直线与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且. (1)求椭圆方程; (2)求m的取值范围.