已知函数,.(1)若,判断函数是否存在极值,若存在,求出极值;若不存在,说明理由;(2)设函数,若至少存在一个,使得成立,求实数a的取值范围;(3)求函数的单调区间.
某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω。在区间[0,100]对企业没有造成经济损失;在区间对企业造成经济损失成直线模型(当API为150时造成的 经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的 经济损失为2000元; (1)试写出是S(ω)的表达式; (2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率; (3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
附:
设分别是椭圆的 左,右焦点。(1)若P是该椭圆上一个动点,求的 最大值和最小值。(2)设过定点M(0,2)的 直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l斜率k的取值范围。
已知函数f(x)=ex+2x2—3x(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2) 当x ≥1时,若关于x的不等式f(x)≥ax恒成立,求实数a的取值范围;(3)求证函数f(x)在区间[0,1)上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3)。
已知a,b均为正数,且a+b=1,证明:(1)(2)
在平面直角坐标系中,原点为,抛物线的方程为,线段是抛物线的一条动弦.(1)求抛物线的准线方程和焦点坐标;(2)若,求证:直线恒过定点;(3)当时,设圆,若存在且仅存在两条动弦,满足直线与圆相切,求半径的取值范围?